
ELECTRONICS PROJECTS Vol. 20

PC-Based 7-Segment
Rolling Display

It is very interesting and con
venient to be able to control
everything while sitting at

your PC terminal. Here, a simple
hardware circuit and software is
used to interface a 7-segment based
rolling display.

The printer port of a PC pro-
vides a set of points with some act-
ing as input lines and some others
as output lines. Some lines are open
collector type which can be used as
input lines. The circuit given here
can be used for interfacing with any
type of PC’s printer port.

The 25-pin parallel port connec-
tor at the back of a PC is a combi-
nation of three ports. The address
varies from 378H-37AH. The 7 lines
of port 378H (pins 2 through 8) are
used in this circuit to output the
code for segment display through
IC1. The remaining one line of port
378H (pin 9) and four lines of port
37AH (pins 1, 14, 16, 17) are used
to enable the display digits (one a
time) through IC2.

The bits D0, D1 and D3 of port
37AH connected to pins 1, 14 and 17
of ‘D’ connector are inverted by the
computer before application to the pins
while data bit D2 is not inverted. There-
fore to get a logic high at any of former
three pins, we must send logic 0 output to
the corresponding pin of port 37AH.

Another important concept illustrated
by the project is the time division multi-
plexing. Note that all the five 7-segment
displays share a common data bus. The

P r o g r a m
/*DISP.C*** PC BASED ROLLING

 DISPLAY */
/* P.R.DESHMUKH*/
#include<stdio.h>
#include<conio.h>
#include<dos.h>
#define PORTA 0x378
#define PORTB 0x37a
void main()
{
int dno[6]={0x0a,0x09,0x0f,0x03,0x80};

 /* code for “hallo”*/
int m[5]={0x76,0x77,0x38,0x38,0x3f };

 /*code for the selection of display*/
int f,j;

clrscr();
for(f=200;f<=500;f+=100)
{
sound(f);
delay(100);
}
nosound();
while (!kbhit())
{
for (j=0;j<=4;j++)
{
outportb(PORTA,m[j]);
if(j<=3)
{
outportb(PORTB,dno[j]);

delay(300);

}

else
{
outportb(PORTB,0x0b);
 outportb(PORTA,m[j]);
outportb(PORTA ,(m[j] || (0x80)));
delay(300);
}
}
}
}

PC places the 7-segment code for the first
digit/character on the data bus and ena-
bles only the first 7-segment display. After
delay of a few milliseconds, the 7-segment
code for the digit/character is replaced by
that of the next charter/digit, but this time
only second display digit is enabled.

After the display of all characters/
digits in this way, the cycle repeats itself

over and over again. Because of this rep-
etition at a fairly high rate, there is an
illusion that all the digits/characters are
continuously being displayed. DISP1 is to
be physically placed as the least signifi-
cant digit.

IC1 (74LS244) is an octal buffer which
is primarily used to increase the driving
capability. It has two groups of four buff-

ELECTRONICS PROJECTS Vol. 20

ers with non-inverted tri-state outputs.
The buffer is controlled by two active
low enable lines. IC2 (75492) can drive
a maximum of six 7-segment displays.
(For driving up to seven common-cathode
displays one may use ULN2003 described
in the previous circuit idea.)

The program for rolling display
is given in the listing DISP.C above.

Whatever the message/characters to
be displayed (here five characters have
been displayed), these are separated
and stored in an array. Then these are
decoded.

Decoding software is very simple.
Just replace the desired character with
the binary equivalent of the display
code. The display code is a byte that

has the appropriate bits turned on. For
example, to display character ‘L’, the
segments to be turned on are f, e and
d. This is equivalent to 111000 binary
or 38 hex.

Please note that only limited char-
acters can be formed using 7-segment
display. Characters such as M, N and K
cannot be formed properly.

