CIRCUIT IDEAS

UNIVERSAL HIGH-RESISTANCE VOLTMETER

The full-scale deflection of the universal high-input-resistance voltmeter circuit shown in the figure

depends on the function switch position as follows:

- (a) 5V DC on position 1
- (b) 5V AC rms in position 2
- (c) 5V peak AC in position 3

(d) 5V AC peak-to-peak in position 4 The circuit is basically a voltage-to-

current converter. The design procedure is as follows:

Calculate R_I according to the application from one of the following equations: (a) DC voltmeter: R_{IA} = full-scale E_{DC}/I_{FS}

(b) RMS AC voltmeter (sine wave only): $R_{IB} = 0.9$ full-scale E_{RMS}/I_{FS}

(c) Peak reading voltmeter (sine wave only): $R_{IC} = 0.636$ fullscale E_{PK}/I_{FS}

(d) Peak-to-peak AC voltmeter (sine wave only): $R_{ID} = 0.318$ full-scale $E_{PK,TO,PK} / I_{FS}$

full-scale $E_{PK-TO-PK} / I_{FS}$ The term I_{FS} in the above equations refers to meter's full-scale deflection current rating in amperes.

It must be noted that neither meter resistance nor diode voltage drops affects meter current.

Note: The results obtained during practical testing of the cir-

cuit in EFY lab are tabulated in Tables I through IV.

A high-input-resistance op-amp, a bridge rectifier, a microammeter, and a few other discrete components are all that are required to realise this versatile circuit. This circuit can be used for measurement of DC, AC RMS, AC peak, or AC peak-to-peak voltage by simply chang-

TABLE I		
Position 1 of Function Switch		
E _{dc} input	Meter Current	
5.00V	44 μΑ	
4.00V	34 µA	
3.00V	24 µA	
2.00V	14 µA	
1.00V	4 µÅ	

TABLE II		
Position 2 of Function Switch		
E _{rms} input	Meter Current	
5V	46 µA	
4V	36 µA	
3V	26 µA	
2V	18 µA	
1V	10 µA	

TABLE III		
Position 3 of Function Switch		
E _{Pk} input	Meter Current	
5V peak	46 µA	
4V peak	36 µA	
3V peak	26 µA	
2V peak	16 µA	
1V peak	6 µÅ	

TABLE IV		
Position 4 of Function Switch		
E _{Pk·To·Pk}	Meter Current	
5V peak to peak	46 µA	
4V peak to peak	36 µA	
3V peak to peak	26 µA	
2V peak to peak	16 µA	
1V peak to peak	7 μΑ	

ing the value of the resistor connected between the inverting input terminal of the op-amp and ground. The voltage to be measured is connected to non-inverting input of the op-amp.