1. Bu site çerez kullanmaktadır. Siteyi kullanmaya devam etmeniz halinde çerez kullanımı ile ilgili site koşullarını kabul etmiş sayılırsınız. Daha Fazlasını Öğren.
  2. Forum İllegal Uyarısı Forum kuralları gereği forumda video ve illagal paylaşım yapmak yasaktır.Program Arşivimizde ise kısıtlanmış sürüm yada dağıtımı serbest olan (trial - freeware) yazılımlar yayınlayınız..Aksi takdirde mesajlarınız silinecektir..

AC/DC Microammeter Circuit

Konusu 'Elektronik Devreler' forumundadır ve uydudoktoru tarafından 8 Ekim 2012 başlatılmıştır.

  1. uydudoktoru

    uydudoktoru Aktif Üye Yönetici Yönetici

    13 Haziran 2009
    Ödül Puanları:
    While the schematic is similar, there are notable differences—the voltage drop is now 100mV rather than 1V, the sensitivity is 10nA full scale rather than 100nA and it now measures AC or DC. A precision rectifier rectifies the AC voltage so that a DC meter may be used.[h=2]Microammeter Circuit Schematic[/h][​IMG]
    Protoboard Photo
    Set-up Photo
    OP Amp Selection
    I used a TL074 quad JFET op amp only because that is what was available—there are many suitable candidates—the main requirement is for it to have very low input bias current, and that is why I selected a JFET version. A CA3130 CMOS op amp would work just as well—perhaps better because it has offset null capability.
    Circuit Protection
    The sensitive op amp input is protected against dangerous transients via the series resistor R9 and the anti-parallel diodes across the input.
    Precision Rectifier
    By putting the meter rectifier inside the feedback loop, the voltage drop of the diodes becomes inconsequential due to the high open loop gain of the op amp (Avol = 200,000) that easily corrects this error.
    The Meter
    I used my venerable Simpson 260 multimeter on the 0.5mA scale. In this case, R8 = 0.1V /0.5mA = 200Ω. Any serious experimenter should have an analog multimeter in his bag of tricks. I have always had best luck with Simpson.
    All is not lost if you do not have an analog meter—a properly applied DVM can do this also, but this circuit is designed around the analog meter.
    10nA Full Scale
    Actually, this is wishful thinking because the sensitivity is too great for my set-up. As a result, the meter reads half-scale (5nA AC noise) without anything connected. The 100nA setting is much more reasonable—Mr. Marian obviously knew what he was doing by limiting his circuit to 100nA FS. 10nA can still be measured, but the meter would be reading 10% deflection on the 100nA range. All would work better if packaged inside a shielded enclosure.
    On the 10nA range, it is so sensitive that AC current caused by body capacitance at a distance of 30mm from the input lead was easily visible—something like putting your hand near a high impedance oscilloscope probe and watching the AC pickup on the trace.
    Battery Operation
    To eliminate ground loops, battery operation is essential. The primary to secondary capacitance of the power supply power transformer can drives this circuit crazy. I cheated and used my line-powered power supply and I believe that this is what caused so much residual noise on the 10nA range.
    One caution about battery operation—the short-circuit current of even a tiny 9V battery may be as high as 5A and active circuitry is very unforgiving if connected incorrectly—do not let the smoke escape because the smoke is what makes it work!
    One Important Application
    Measuring the ground leakage on electronic equipment is required for UL /CSA /VDE … UL limits such current to 5mA to prevent shock hazard. Actually, 5mA is high in my estimation as it may be easily felt.
    RMS /Average of a sine wave
    If measuring sine wave current, remember that this is an average reading meter and that the RMS value of a sine wave is a factor of 1.1 higher than the average.
    For the future
    I’m sure that readers are wondering what other neat circuits are already on the Protoboard. Stay tuned because there are many interesting circuits in the pipeline.

Sayfayı Paylaş